STATE OF ALASKA

DEPARTMENTOFNATURALRESOURCES

DMSIONOFGEOLOGICALANDGEOPHYSICALSURVEYS

STATE OF ALASKA

Bill Sheffield, Governor

Esther C. Wunnicke, Commissioner, Dept. of Natural Resources

Ross G. Schaff, State Geologist

December 1984

This report is a preliminary publication of DGGS. The author is solely responsible for its content and will appreciate candid comments on the accuracy of the data as well as suggestion5 to improve the report.

Report of Investigation 84-27 WATER-QUALITY DATA FROM THE BELUGA COAL-FIELD AREA, ALASKA JUNE 1982 THROUGH MARCH 1983

By
Mary A. Maurer and Douglas C. Toland

STATE OF ALASKA Department of Natural Resources DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS

According to Alaska Statute 41, the Alaska Division of Geological and Geophysical Surveys is charged with conducting 'geological and geophysical surveys to determine the potential of Alaska lands for production of metals, minerals, fuels, and geothermal resources; the locations and supplies of ground waters and construction materials; the potential geologic hazards to buildings, roads, bridges, and other installations and structures; and shall conduct other surveys and investigations as will advance knowledge of the geology of Alaska.'

In addition; the Division shall collect, evaluate, and publish data on the underground, surface, and coastal waters of the state. It shall also file data from water-well-drilling logs.

DGGS performs numerous functions, all under the direction of the State Geologist---resource investigations (including mineral, petroleum, and water resources), geologic-hazard and geochemical investigations, and information services.

Administrative functions are performed under the direction of the State Geologist, who maintains his office in Anchorage (ph. 276-2653).

This report is for sale by DGGS for \$2. It may be inspected at the following locations: Alaska National Bank of the North Rldg., Geist Rd. and University Ave., Fairbanks; 3601 C St. (10th floor), Anchorage; 400 Willoughby Center (3rd floor), Juneau; and the State Office Bldg., Ketchikan.

Mail orders should be addressed to DGGS, 794 University Ave. (Rasement), Fairbanks 99701.

CONTENTS

	Page
ntroduction	1
Study area	1
ethods and materials	4
Physical and chemical parameters	4
	4
Biological sampling	5
esults	5
eferences cited Appendix A - Analytical procedures	2 6
FIGURES	
Figure 1. Location map of water-quality sampling sites, Beluga coal- field area	
Beluga coal-field area	6
TABLES	
Table 1. Field parameters and major inorganic constituents of Beluga water-quality samples	8.
2. Minor-element analysis of Beluga water-quality samples 3. Volatile-organlcs analysis of Beluga water-quality samples	12 17
4. Organic-priority-pollutant analysis of Beluga water-	17
quality samples	17
collected from Middle Creek, Belupa coal-field area, August 27, 1982I	21
6. Density (numbers/m²), number of species, species diversity, and evenness of benthic invertebrates collected from Lone Creek, Beluga coal-field area,	21
August 27, 1982	2 3
7. Habitat parameters at benthic-invertebrate sampling sites, August 27, 1982	
To convert meters to feet, multiply by 3.779. To convert centimeters to inches, multiply by 0.394. To convert kilometers to miles, multiply by 0.621.	

WATER-QUALITY DATA FROM THE BELUGA COAL AREA, ALASKA JUNE 1982 THROUGH MARCH 1983

Mary A. Maurer 1 and Douglas C. Toland 2

INTRODUCTION

The Alaska Departments of Natural Resources (DNR) and Environmental Conservation (DEC) are mandated to collect and evaluate water-quality data in the state. In this project, surface-water quality and henthic-invertebrate data were collected in five streams in the Beluga coal-field area from June 1982 through March 1983. This report contains the tabulated data from the first year of the 2-yr study. Background information, data-collection procedures, and analytical methods are also presented.

The potential effects of coal mining on surface-water quality in Alaska have been identified by Zemansky and others (1975; 1976), University of Alaska Arctic Environmental Information and Data Center (1980), and Kolankiewicz (1982). Baseline data on the surface-water quality of the Beluga coal-field area have been presented by Scully and others (1980; 1981), Cook Inlet Region, Inc. and Placer Amex, Inc. (1981), and Environmental Research and Technology, Inc. (1983).

The purpose of this study is to obtain -and evaluate water-quality information from five streams (Bishop Creek, Capps Creek, Middle Creek, Lone Creek, and the Chuitna River) in the Reluga coal-field area prior to mining. Specific objectives of the study are to: 1) determine the baseline chemical water quality of the streams; 2) assess the biological water quality in two streams by determining the distribution and abundance of benthic invertebrates; and 3) supplement the data base of the streams to assess the effects of future coal mining on water quality.

ACKNOWLEDGMENTS

This study is a cooperative effort between DGGS and DEC. We thank Tom Trible and staff at the DEC Laboratory in Douglas for providing sample quality assurance and state-of-the-art analyses. We also thank George McCoy (DGGS) for providing technical advice, assisting with fieldwork, and reviewing the manuscript, Jim Munter (DGGS) for reviewing the manuscript, Roger Allely and Stan Carrick (DGGS) for assisting with fieldwork, and Jenny Weir and Roberta Mann (DGGS) for typing the tables. We appreciate the loan of laboratory equipment from the U.S. Geological Survey Water Resources Division, Anchorage and the assistance of personnel at Alaska Helicopters, Inc.

STUDY AREA

The Beluga coal-field area is located in south-central Alaska on the

DGGS, P.O. Box 772116, Eagle River, Alaska 99577.
DEC, Pouch 0, Juneau, Alaska 99811.

west side of Cook Inlet, about 80 km west of Anchorage (fig. 1). The terrain is covered with birch, poplar, and spruce forests and numerous muskegs. The **piedmont** lowlands gradually rise to a treeless plateau that extends northwest to the Alaska Range. Surficial deposits are predominantly of glacial origin. Coal (subbituminous to **lignite**) is located in the Tyonek Formation of the Tertiary Kenai Group (Calderwood and **Fackler**, 1972). Coal reserves are estimated at 2.26 billion short tons (McGee, 1973). Four state coal leases presently exist in the area: Lone Ridge, Center Ridge, Capps Creek, and Middle Creek Chuitna River (Diamond Shamrock) (fig. 1). Large-scale mining development of these areas is proposed to begin within the next two decades. Active exploration and test mining have occurred.

Climate in the study area is transitional between maritime and continental. Annual precipitation is about 100 cm in the Chuitna River basin, mostly in the form of rainfall in September and October and heavy snowfall during the winter (Scully and others, 1981). Streams are ice-covered from December to April. The snow pack in late winter 1982 was about 0.7 m at Congahbuna Lake (fig. 1) and 2.1 m at Capps plateau (U.S. Soil Conservation Service, 1983).

Three principal rivers, the Beluga, the Chichantna, and the Chuitna flow through the coal-field area. The Chichantna and the Beluga Rivers are the only glacial streams in the area.

Bishop Creek and Capps Creek are in the Beluga River drainage. Rishop Creek has an average slope of 12.9 m/km and meanders.in its lowermost 20 km. The stream picks up a significant sediment load in its lower reaches from banks composed of "very fine banded plastic clay" (Barnes, 1966). Bishop Creek was chosen as a control stream because no mining operation is proposed within the watershed. Capps Creek has an average slope of 61.5 m/km as it flows through the Capps coal field and the large landslide on the north flank of Capps plateau. The stream picks up a heavy sediment load under high flow conditions. Stream slope averages 3.8 m/km over the lowermost 3.2 km.

Middle and Lone Creeks (fig. 1) have their headwaters in the Chuitna coal field and slope about 12.5 and 10.4 m/km, respectively. Both streams meander in their middle reaches, carry little suspended sediment, and have an iron-colored stain in the water column and on substrates during periods of low flow.

The slope of the Chuitna River is about 12.3 m/km. Slab-shaped coal boulders and cobbles make up part of the stream's substrate. The river carries very little suspended sediment except during high-flow conditions.

Locations of sampling sites are shown on figure 1. The sites on Capps Creek and the Chuitna River are located at U.S. **Geological** Survey (USGS) gaging stations. All chemical water-quality sampling sites are downstream from prospective coal-mining areas in the lower portion of the drainage basin.

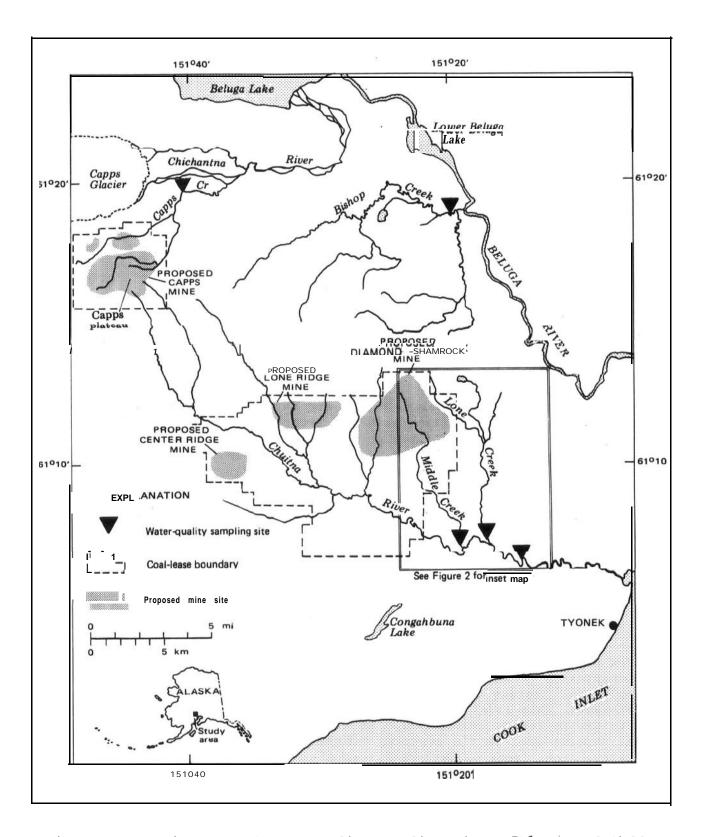


Figure 1. Location map of water-quality sampling sites, **Beluga** coal-field area, Alaska.

METHODS AND MATERIALS

Physical and Chemical Parameters

Water-quality data were collected quarterly to correspond with summer high flow (June), summer low flow (August), early-winter flow (December), and late-winter flow (March). A digital 4041 Hydrolab was used to collect field data on water temperature, dissolved oxygen, pH, and specific conductance. An Orion digital pH meter was used with the Hydrolab, and readings were taken in areas of low velocities to avoid streaming effects across membrane probes.

Stream discharge was measured at each water-chemistry sampling site according to USGS methods (Carter and Davidian, 1968; Buchanan and Somers, 1969). Velocities were measured with a Price or Marsh-McBirney current meter.

Bicarbonate alkalinity was determined in the field by titrating an untreated sample with 0.01639N sulfuric acid to an endpoint of pH 4.5 (U.S. Environmental Protection Agency, 1983).

Water samples were collected by grab sampling. Bottle preparation, sample preservation, and handling times for all samples were consistent with methods of the U.S. Environmental Protection Agency (1979; 1982) and the American Public Health Association (1980) except for trace-metal, nitrate-nitrogen? and ammonia samples. Metal and nutrient samples were treated in the laboratory in accordance with. DEC procedures. Trace metals are designated as 'recoverable' instead of 'total recoverable' because the EPA methods on sample acidification and preparation were modified (appendix A). The dissolved concentration of a chemical constituent was determined by filtering the sample through a 0.45-b membrane filter.

Selected constituents from the following groups were analyzed: recoverable and dissolved metals; major ions; nutrients; volatile, aromatic organics; and acid extractable and base/neutral extractable orpanics. Color, turbidity, total filtrable and nonfiltrable residue, chemical-oxygen demand, and gross alpha radiation were determined in the laboratory. All chemical samples except selected organic samples were analyzed at the DEC laboratorp in Douglas.

Analytical results expressed as less than (<) a specified concentration (for example, <200 mg/l) are below the limit of quantitation. The limit of quantitation is the lowest concentration of a chemical constituent that the analytical process can quantitate at a statistically chosen level of accuracy. This level is determined by the laboratory. The limit of detection is the lowest concentration of a chemical constituent that the analytical process can, on the average, determine. Appendix A lists the limit of quantitation, limit of detection, method of analysis, and instrumentation for each chemical constituent.

Biological Sampling

A synoptic survey of benthic invertebrates was conducted in August 1982

at five sites on Middle Creek and six sites on Lone Creek (fig. 2). Sampling sites were approximately equally spaced along the streams. Sites are numbered downstream (sites 1-5 on Middle Creek and sites 6-11 on Lone Creek).

U.S. Geological Survey quantitative methods were used to sample invertebrates (Slack and others, 1973). Two sampling points were randomly picked on a belt transect at each site. A $0.1-m^2$ modified Hess bottom sampler was used. The leading half of the sampler contained $600-\mathcal{M}$ nylon Nitex netting, and the trailing half and bag contained $300-\mathcal{M}$ Nitex mesh.

Habitat parameters measured at benthic sampling sites included water depth, water temperature, stream width, and stream gradient. **Stream-** substrate composition, riparian habitat, and benthic-habitat type were estimated.

Benthic invertebrates were preserved in 70-percent alcohol and sorted and identified into major taxonomic groups. Insects were identified to the genus or species level. Some early **instar** specimens were identified to order or family only. Midges, predominantly chironomids, were identified to family.

Invertebrate density, species richness, Shannon-Weaver diversity index (log base 2), and evenness were calculated for each sample. Densities were standardized to ${\tt organisms/m}^2$.

RESULTS

The results of the chemical water-quality analyses are presented in tables 1-4. Results are expressed in micrograms per liter (/g/1) or milligrams per liter (mg/1). Analytical procedures are described in appendix A.

The results of the benthic invertebrate survey are shown in tables 5 and 6. Benthic-habitat parameters are listed in table 7.

REFERENCES CITED

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1980, Standard methods for the examination of water and wastewater (15th ed.): Washington, D.C., American Public Health Association, 1134 p.
- Barnes, F.F., 1966, Geology and coal resources of the Beluga-Yentna region, Alaska: U.S. Geological Survey Bulletin 1202-C, p. 1-54.
- Buchanan, T.J., and Somers, W.P., 1969, Discharge measurements at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chapter A8, 65 p.
- Calderwood, K.W., and **Fackler,** W.C., 1972, Proposed stratigraphic nomenclature for Kenai Group, Cook Inlet basin, Alaska: American Association of Petroleum Geologists Bulletin, v. 56, no. 4, p. 739-754.
- Carter, R.W., and Davidian, Jacob, 1968, General procedures for gaging streams: U.S. Geological Survey **Techniques** of Water-Resources Investigations, book 3, chapter A6, 13 p.

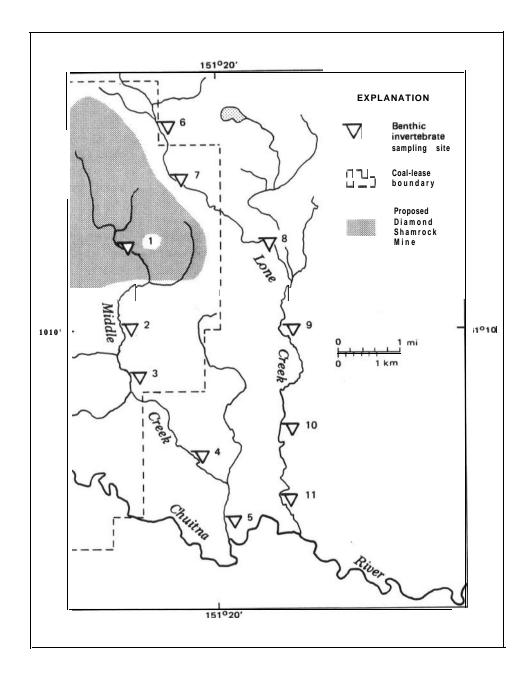


Figure 2. Location map of benthic-invertebrate sampling sites, Beluga coalfield area, Alaska.

- Cook Inlet Region, Inc. and Placer Amex, Inc., 1981, Coal to methanol feasibility study, Beluga methanol project: Anchorage, 5 v.
- Environmental Research and Technology, Inc., 1983, Surface hydrology and water quality interim report (draft report): Fort Collins, Colorado, Environmental Research and Technology, 4 v.
- Kolankiewicz, L.J., 1982, Alaskan coal development: An assessment of potential water quality impacts: Juneau, Alaska Department of Environmental Conservation, Alaska Water Quality Management Planning Program, 84 p.
- McGee, D.L., 1973, Coal reserves, Beluga and Chuitna Rivers and Capps Glacier areas: Alaska Division of Geological and Geophysical Surveys Open-file Report 30, 5 p., 1 sheet, scale 1:63,360.
- Scully, D.R., Krumhardt, A.P., and Kernodle, D.R., 1980, Data from a hydrologic reconnaissance of the Beluga, Peters Creek, and Healy coal areas, Alaska: U.S. Geological Survey Open-file Report 80-1206, 54 p. 1981, Hydrologic reconnaissance of the Beluga, Peters Creek, and Healy' coal area, Alaska: U.S. Geological Survey Water-Resources Investigations 81-56, 71 p.
- Slack, K.V., Averett, R.C., Greeson, P.E., and Lipscomb, R.G., 1973, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chapter A4, 165 p.
- U.S. Environmental Protection Agency, 1979, Methods for chemical analysis of water and wastes: U.S. Environmental Protection Agency, EPA-600/4-79-020.
- , 1982, Methods for organic chemical analysis of municipal and industrial wastewater: U.S. Environmental Protection Agency, EPA-600/4-
- _, 1983, Methods for chemical analysis of water and wastes: U.S.
- Environmental Protection Agency, EPA-600/4-79-020.

 1J.S. Geological Survey, 1983, Water resources data for Alaska, water year 1982: U.S. Geological Survey Water-Data Report AK-82-1, 371 p.
- U.S. Soil Conservation Service, 1983, Summary of snow survey measurements for Alaska, 1951-1982: Anchorage, 209 p.
- University of Alaska Arctic Environmental Information and Data Center, 1980, Environmental impacts associated with coal development in the Kukpowruk, Nenana, and Beluga fields, Alaska: Anchorage, 52 p.
- Zemansky, G.M., Tilsworth, T., and Cook, D.J., 1975, Potential water quality impacts of Alaskan coal mining, in Rao, P.D., and Wolff, E.N., eds., Focus on Alaska's coal '75: Alaska Coal Conference, lst, Fairbanks, October 1975, Proceedings: Fairbanks, University of Alaska Mineral Industry Laboratory Report 37, p. 182-189.
- , 1976, Alaska mining and water quality: Fairbanks, University of Alaska Institute of Water Resources Report IWR-74, 113 p.

Table 1. Field parameters and major inorganic constituents of Beluga water-quality samples.

Date	Time	Stream- flow, instan- taneous (cfs)	Specific conductance (umhos at 25°C)	pH (units)	Water temperature (°C)	Color, (platinum cobalt units)	Oxygen, dissolved (mg/1)	Calcium, recoverable (mg/l as Ca)
Bishop Creek 06-17-82 08-24-82 12-15-82 03-30-83	0930 0900 0935 1230	170 14 15 13	28 53 33 61	6.45 7.15 7.30 6.85	8.6 11.8 -0.1 -0.1	4 0 4 5 3 5 4 0	10.5 10.4 11.3 12.2	<5 5.4 <5 5.0
Capps Creek 06-17-82 08-24-82 12-15-82 03-30-83	1230 1100 1225 1420	153 15 9 5	39 43 48 57	6.10 7.40 6.90 7.25	6.8 10.5 0.5 1.1	60 35 30 35	10.9 11.0 12.4 13.8	10.6 5.5 5.1 6.3
Middle Creek 08-24-82 12-16-82 03-31-83	1305 1225 1410	8 7 4	56 59 77	a _ 7.60 6.85	10.3 0 0.2	45 50 45	a _ 12.7 14.2	7.0 5.5 7.4
Lone Creek 08-24-82 12-16-82 03-31-83	1540 1100 1150	13 16 10	63 58 66	7.45 7.20 7.10	11.8 -1.0 0	40 45 50	a _ 12.9 14.1	6.2 5.5 6.0
Chuitna River 06-17-82 08-24-82 12-16-82 03-31-83	near Tyonek 1700 1600 0900 1100	b552 c105 d116 e105	29 51 42 57	6.85 7.75 7.00 7.20	10.2 14.2 -1.0 0.1	25 30 35 30	10.0 10.5 12.5 14.3	<5 5.3 5.0 6.4

 ∞

^{###} Equipment failure, no measurement.

Cuscs gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

Equipment failure, no measurement.

Cuscs Geological Survey (1983).

Market Fig. 12 - 1 - 82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Pusc Geological Survey (1983).

USGS measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

USGS measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Table 1. (con.)

	Date	Time	Stream- flow, instan- taneous (cfs)	Calcium, dissolved, (mg/1 as Ca)	Magnesium, recoverable (mg/l as Mg)	Magnesium, dissolved (mg/1 as Mg)	Sodium, recoverable (mg/1 as Na)	Sodium, dissolved (mg/1 as Na)	Potassium, recoverable (mg/las K)
	Bishop Creek 06-17-82 08-24-82 12-15-82 03-30-83	0930 0900 0935 1230	170 14 15 13	<5 <5 <5 5.0	<5 <5 <5 <5	<5 <5 <5 <5	<10 <10 <10 7.5	<10 <10 <10 7.5	ব ব ব
	Capps Creek 06-17-82 08-24-82 12-15-82 03-30-83	1230 1100 1225 1420	153 15 9 5	<6.0 5.0 6.2	13.3 <5 <5 <5	<5 <5 <5 <5	<10 <10 <10 3.4	<10 <10 <10 3.3	3.1 1.6 <1 <1
	Middle Creek 08-24-82 12-16-82 03-31-83	1305 1225 1410	7 4	7.5 5.5 7.7	<5 <5 <5	<5 <5 <5	<10 <10 4.7	<10 <10 4.7	⊲ 1 ∢1 a
I 9 I	Lone Creek 08-24-82 12-16-82 03-31-83	1540 1100 1150	13 16 10	6.3 5.4 6.5	<5 · <5 <5	<5 <5 <5	<10 <10 4.8	<10 <10 5.5	ব ব ব
	Chuitna River 06-17-82 08-24-82 12-16-82 03-31-83	near Tyons 1700 1600 0900 1100	b ₅₅₂ c105 d116 e105	<5 5.3 7.5 6.4	<5 <5 <5 <5	<5 <5 2.8 <5	<10 <10 <10 4.0	<10 <10 <10 4.1	ব ব ব

busgs gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

CU.S. Geological Survey (1983).

Measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

PUSGS measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Table 1. (con.)

Date	Time	Stream- flow, instan- taneous (cfs)	Potassium, dissolved (mg/1 as K)	Alkalinity, bicarbonate (field) (mg/1 as HCO ₃)	Sulfate, (mg/1 as SO ₄)	Nitrogen, nitrate total (mg/1 as N)	Nitrogen, ammonia total (mg/1 as N)	Phosphorus, ortho, total (mg/1 as P)
Bishop Creek 06-17-82 08-24-82 12-15-82	0930 0900 0935	170 14 15	ব ব ব	12 30 27	<10 <10 <10	ব ব ব ব	<0.1 <0.1 <0.1 <1.0	<0.5 <0.5 <0.5
03-30-83 Capps Creek 06-17-82 08-24-82 12-15-82 03-30-83	1230 1230 1100 1225 1420	13 153 15 9 5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	10 31 31 31 36	<10 15 <10 <10 <10 <10	ব ব ব ব ব	<0.1 <0.1 <0.1 <0.1 <1.0	<0.05 <0.5 <0.5 <0.5 <0.05
Middle Creek 08-24-82 12-16-82 03-31-83		8 7 4	ব ব ব	45 35 46	<10 <10 <10	a <1 <1	<0.1 <0.1 <1.0	<0.5 <0.5 <0.05
bone Creek 08-24-82 12-16-82 03-31-83	1540 1100 1150	13 16 10	<1 <1 <1	a _ 35 40	<10 <10 <10	<1 <1 <1	<0.1 <0.1 <1.0	<0.5 <0.5 co.05
Chuitna River 06-17-82 08-24-82 12-16-82 03-31-83	near Tyonek 1700 1600 0900 1100	^b 552 c105 d116 e ₁₀₅	ব ব ব ব	12.5 35 34 39	<10 <10 <10 <10	<1 <1 <1 <1	<0.1 <0.1 <0.1 <1.0	<0.5 <0.5 <0.5 co.05

b Requipment failure, no measurement.
USGS gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

GU.S. Geological Survey (1983).

Measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Date	Time	Stream- flow, instan- taneous (cfs)	Residue, total filtrable at 180°C (mg/1)	Residue, total non- filtrable at 103-105°C (mg/1)	Turbidity (nephelo- metric turbidity units)	Gross Alpha (pCi/1)	Chemical oxygen demand (COD) (mg/1)
Bishop Creek 06-17-82 08-24-82 12-15-82 03-30-83	0930 0900 0935 1230	170 14 15 13	65 68 80 40	71 8 .5 10	38 1.6 4.7	₹ H	<25 <25 <25 <25 <25
Capps Creek 06-17-82 08-24-82 12-15-82 03-30-83	1230 1100 1225 1420	153 15 9 5	8₁₀₇₉ 36	3400 172.2 43	150 31 21 3.4	<2 <1 <1 <1	<25 <25 <25 <25
Middle Creek 08-24-82 12-16-82 03-31-83	1305 1225 1410	8 7 4	5 9 8 9 6 2	1.6 4	1.4 1.7 4.0	<1 <1 <1	<25 <25 <25
Lone Creek 08-24-82 12-16-82 03-31-83	1540 1100 1150	13 16 10	78 85 66	6.3 2 3	1.4 2.6 3.2	<1 <1 <1	<25 <25 <25
Chuitna River nea 06-17-82 08-24-82 12-16-82 03-31-83	ar Tyonek 1700 1600 0900 1100	b ₅₅₂ c ₁₀₅ d ₁₁₆ e ₁₀₅	19 65 80 63	8 0.2 7 3	2.0 0.6 3.7 4.3	<1 <1 <1 <1	<25 <25 <25 <25

bilscs gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

dust geological Survey (1983).

dust measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

buscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Buscs measurement, Alaska.

		Table 2. Minor-element analysis of Beluga water-quality samples.										
Date	Time	Stream- flow, instan- taneous (cfs)	Aluminum, recoverable (µg/1 as Al)	Aluminum, dissolved (µg/l as Al)	Arsenic, recoverable (µg/1 as As)	Arsenic, dissolved (µg/1 as As)	Barium, recoverable (µg/l as Ba)	Barium, dissolved (µg/1 as Ba)				
Bishop Creek 06-17-82 08-24-82 12-15-82 03-30-83	0930 0900 0935 '1230	170 14 15 13	3300 295 240	150 38 60	\sqrt \$	ও ও ও	Q00 Q00 Q00 Q00	000 000 000 000				
Capps Creek 06-17-82 08-24-82 12-15-82 03-30-83	1230 · 1100 1225 1420	153 15 9 5	56000 300 360	13000 5 6 0	9 5 6 6	6 6 6 5	280 490 QOO QOO	Q00 Q00 Q00 Q00				
Middle Creek 08-24-82 12-16-82 03-31-83 ^a	1305 1225 1410	8 7 4	78 60	92 < 50	♂ ♂ 6	⋖ ⋖5 6	Q00 Q00 Q00	Q00 Q00 Q00				
Lone Creek 08-24-82	1540	13	8 9	45	6	6	Q00	Q00				
03-31-83 ^a	1100 1150	16 10	60	60	্ ত	< <5	Q00 Q00	Q00 Q00				
Chuitna River 06-17-82 08-24-82 12-16-82 03-31-83 ^a	near Tyon (1700) 1600 0900 1100	ek b552 c105 d116 e105	550 5 75	9 0 3 0 6 0	6 6 6	6 6 6 6	QOO <200 QOO <200	000 000 000 000				

TISCS Geological Survey (1983, p. 171).

duscs Geological Survey (1983, p. 171).

duscs measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

euscs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Date	Time	Stream- flow, instan- taneous (cfs)	Beryllium, recoverable (µg/1 as Be)	Beryllium, dissolved (µg/1 as Be)	Cadmium, recoverable (µg/1 as Cd)	Cadmium, dissolved (µg/1 as Cd)	Chromium, recoverable (µg/1 as Cr)	Chromium, dissolved (µg/1 as Cr)
Bishop Creek 06-17-82 08-24-82 12-15-82 03-30-83	0930 0900 0935 1230	170 14 15 13	♡ a ♡	Q Q Q	& & & &	& & & &	6 40 40 6	6 40 40 6
Capps Creek 06-17-82 08-24-82 12-15-82 03-30-83	1230 1100 1225 1420	153 15	2.7 2 c?	Q Q	८ ८८ ८८	0 000	36 40 40 6	6 40 40 6
Middle Creek 08-24-82 12-16-82 03-31-83 ^a	1305 1225 1410	8 7 4	₹	Ø	Q Q Q	v Q	ব ব ত ব ত	₫0 ₫0 6
Lone Creek 08-24-82 12-16-82 03-31-83	1540 1100 1150	13 16 10	Q Q	८ ४	Q Q	Q Q a	₫0 ₫0 ₫	ර අ0 අ
Chuitna River 06-17-82 08-24-82 12-16-82 03-31-83	near Tyonek 1700 1600 0900 1100	b ₅₅₂ c ₁₀₅ d ₁₁₆ e ₁₀₅	Q Q Q	Q Q Q	Q Q a Q	Q Q Q Q Q	ぐ く10 く10 ぐ	ර 40 40 ර

Alska.

Alska.

CU.S. Geological Survey (1983, p. 171).

Measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

CU.S. Geological Survey (1983, p. 171).

Measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Date	Time	Stream- flow, instan- taneous (cfs)	Cobalt, recoverable (mg/1 as Co)	Cobalt, dissolved. (µg/1 as Co)	Copper, recoverable (µg/1 as Cu)	Copper, dissolved (µg/1 as Cu)	Iron, recoverable (µg/1 as Fe)	Iron, dissolved (Mg/1 as Fe)
Bishop Creek 06-17-82 08-24-82 12-15-82 03-30-83	0930 0900 0935 1230	170 14 15 13	ত ত	6 6 6	5 ♥ 6 ♥	5 7 6 ⋖	2800 800 1200 1200	260 400 800 100
Capps Creek 06-17-82 08-24-82 12-15-82 03-30-83 ^a	1230 1100 1225 1420	153 15 9 5	40 6 6	6 6 6	110 12 6 16	7 5 6 6	41000 4300 1000 600	700 <200 230 100
Middle Creek 08-24-82 12-16-82 03-31-83	1305 1225 1410	8 7 4	6 6	6 6	6 6 < 5	ও 6 ও	1500 1200 1300	750 700 730
Lone Creek 08-24-82	1540	13	6	6	6	6	1800	1300 500
03-31-83 ^a	1100 1150	16 10	6	6	ক ক	6 6	1200 1400	570
Chuitna River 06-17-82 08-24-82 12-16-82 03-31-83 ^a	near Tyonek 1700 1600 0900 1100	b552 c105 d116 e105	6 6 6	6 < 5 6	6 % 6 6	\5 \5 6 6	750 450 6100 890	250 350 250 350

AA1, Be, Co, and Ni samples lost; results unavailable.

USGS gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

USGS measurement 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

USGS measurement: 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Date	Time	Stream- flow, instan- taneous (cfs)	Lead, recoverable (ug/1 as Pb)	Lead, dissolved (ug/1 as Pb)	Manganese, recoverable (ug/1 as Mn)	Manganese, dissolved (ug/1 as Mn)	Mercury, recoverable (ug/1 as Hg)	Mercury , dissolved (ug/l as Hg)
Bishop Creek 06-17-82 08-24-82 12-15-82 03-30-83	0930 0900 0935 1230	170 14 15 13	<5 <5 <5 <5	<5 <5 <5 <5	90 31 63 77	35 28 54 65	<1 <1 <1 <1	<1 <1 <1 <1
Capps Creek 06-17-82 08-24-82 12-15-82 03-30-83	1230 1100 1225 1420	153 15 9 5	60 <5 <5 <5	<5 <5 <5 <5	1300 170 84 6 3	75 82 70 57	<1 <1 c1 <1	<1 <1 <1 <1
Middle Creek 08-24-82 12-16-82 03-3X-83	1305 1225 1410	8 7 4	<5 <5 <5	<5 <5 <5	61 150 68	50 150 62	<1 <1 <1	<1 <1 <1
Lone Creek 08-24-82 03-13-13 13-14-10	1540 1190 1100	13 16 10	<5 <5 <5	<5 c5 <5	100 89 96	8 2 8 2 8 1	<1 <1 <1	<1 <1 <1
Chuitna River 06-17-82 08-24-82 12-16-82 03-31-83	near Tyonek 1700 1600 0900 1100	b ₅₅₂ c ₁₀₅ d ₁₁₆ e ₁₀₅	<5 <5 <5 <5	<5 <5 <5 <5	22.8 25 49 35	14.3 23 32 25	<1 <1 <1 <1	<1 <1 <1 <1

 $^{\perp}$ 15

"USGS gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

U.S. Geological Survey (1983, p. 171).

Measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

PUSGS measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Date Time	Stream- flow, instan- taneous (cfs)	Nickel, recoverable (µg/1 as Ni)	Nickel, dissolved (µg/1 as Ni)	Selenium, recoverable (Ag/1 as Se)	Selenium, dissolved (µg/1 as Se)	Silver, recoverable (µg/1 as Ag)	Silver, dissolved (µg/1 as Ag)	Zinc, recoverable (µg/1 as Zn	Zinc, dissolved) (µg/1 as Zn)
Bishop Creek 06-17-82 0930 08-24-82 0900 12-15-82 0935 03-30-83^a 1230	1 14 15 13	<00 <00 <00	₫0 ₫0	Q Q Q	a Q Q Q	ડ ડ 6	6 6 6 6	40 6 40 5.3	20.8 15 a 0 6
Capps Creek 06-17-82 1230 08-24-82 1100 12-15-82 1225 03-30-83^a 1420	153 15 9 5	260 12 <10	29 10 10	Q Q Q Q	Q Q Q Q	6 6 6	5 5	170 20 40 11	a 0 6 4.0 6
Middle Creek 08-24-82 1305 12-16-82 1225 03-31-83 1410	7 4	⊴0 ⊴0	₫ 0	Q Q Q	Q Q Q	6 6 6	6 6 6	6 40 6	6 40 6
Lone Creek 08-24-82 1540 03-31-838 IIII III	13 1610	₫ 0	₫0 a 0	⊘ 0 0	Q Q Q	6 6 6	6 5 5	6 ⊴0 6	6 40 6
Chuitna River nea 06-17-82 1700 08-24-82 1600 12-16-82 0900 03-31-83 1100	Tyonek 5552 c105 d116 e105	선0 선0 선0	<10 <10 <10	Q Q Q Q	Q Q a Q	6 6 6	5 5 6 6	₫0 ₫ 0 6	₫0 6

16

Al, Be, Co, and Ni samples lost; results unavailable.

braces gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

cul.S. Geological Survey (1983, p. 171).

measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

euggs measurement, 3-7-83, 0930 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Table 3. Volatile-organics analysis of Beluga water-quality samples.

Daha	m:	Streamfl instan- taneous	Benzene	Ethyl- benzene (µg/1)	Toluene	p-Xylene	m-Xylene (µg/1)	o-Xylene (µg/1)
Date	Time	(cfs)	(µg/1)	(Mg/1)	$(\mu g/1)$	(µg/1)	(KB/1)	W8/ <u>17</u>
Bishop Creek 06-17-82 12-15-82 03-30-83	0930 0935 1230	170 15 13	^a ND co.2 <0.2	^a ND <0.2 <0.2	^a ND <0.2 <0.2	b <0.2 <0.2	<pre>b <0.2 <0.2</pre>	<0.2 <0.2
Capps Creek 06-17-82 12-15-82 03-30-83	1230 1225 1420	153 9 5	^a ND <0.2 <0.2	^a ND <0.2 <0.2	^a ND <0.2 <0.2	0.2 <0.2	b co.2 <0.2	<0.2 <0.2
Middle Creek 08-24-82 12-16-82 03-31-83	1305 1225 1410	- 8 7 4	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 co.2	<0.2 <0.2 <0.2	<0.2 <0.2 to.2	<0.2 <0.2 <0.2
Lone Creek 08-24-82 12-16-82 03-31-83	1540 1100 1150	13 16 10	<0.2 <0.2 <0.2	<0.2 co.2 <0.2	co.2 co.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2
Chuitna River 06-17-82 12-16-82 03-31-83	near Tyonek 1700 0900 1100	c d552 d116 e105	^a ND <0.2 <0.2	^a ND <0.2 <0.2	a _{ND} co.2 <0.2	<0.2 <0.2	b <0.2 <0.2	b <0.2 <0.2

ND = not detected.
No laboratory measurement made.
USGS gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

The provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

The provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Alaska.

The provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Table 4. Organic-priority-pollutant analysis of Beluga water-quality samples.

Capps

Middle

Lone

Chuitna

Bishop

		DIIOF	Oap				101	ic	0110	
Site		eek	Cre	ek	Cre	ek	Cre	eek	Ri	ver
Date	06-17-82	12-15-82	06-17-82	12-15-82	08-24-82	12-16-82	08-24-82	12-16-82	06-17-82	12-16-82
Time	0930	0935	1230	1225	1305	1225	1540	1100	1700	0900
Streamflow (cfs)	170	15	153	9	8	7	13	16	^a 552	"116
Parameter (xg/1)										
ACID EXTRACTABLES										
2,4,6-Trichlorophenol	4	<2	<1	<2	<1	<2 '	<1	<2	<1	<2
Parachlorometacresol	<1	<2	<1	<2	< 1	<2	<1	<2	<1	<2
2-Chlorophenol	<1	<2	<1	<2	<1	<2	<1	<2	<1	<2
2,4-Dichloropheno1	<1	<2	<1	<2	<1	<2	<1	<2	<1	<2
2,4-Dimethylphenol	<1	<2	<1	<2	<1	<2	<1	<2	<1	<2
2-Nitrophenol	<1	<2	<1	<2	<1	<2	<1	<2	<1	<2
4-Nitrophenol	<1	< 5	<1	<5	<1	< 5	<1	<5	<1	< 5
2,4-Dinitrophenol	<1	< 5	<1	< 5	<1	<5	<1	<5	<1	<5
4,6-Dinitro-o-cresol	<1	<10	<1	<10	<1	<10	<1	<10	<1	<10
Pentachlorophenol	<1	<10	<1	<10	<1	<10	<1	<10	<1	<10
Phenol	<1	<2	<1	<2	<1	<2	<1	<2	<1	<2
BASE/NEUTRALEXTRACTABLES										
Acenaphthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzidine	<1	<10	<1	<10	<1	<10	<1	<1.0	<1	<10
1,2,4-Trichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hexachlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hexachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bis(2-chloroethyl)ether	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-Chloronaphthalene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
ducceaging-etation manageroma	n+ C (Savard oral	communicati	on HICCS_IND	D office	Anchorage	Mlacka			

a USGS gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

b USGS measurement, 12-1-82, 1120 hr, provisional records subject to revision, unpublished data on file in USGS-WRD office, Anchorage, Alaska.

Table 4. (con.)

		shop	Cap		Midd		Lor			itna
Site		eek	Cre		Cree		Cre			ver
Date	06-17-82	' 12- 15- 82	06-17-82	12-15-82	08-24-82	12-16-82	08-24-82	12-16-82	06-17-82	12-16-82
Time	0930	0935	1230	1225	1305	1225	1540	1100	1700	0900
Streamflow (cfs)	170	15	153	9	8	7	13	16	^a 552	116
Parameter (µg/1)										
1,4-Dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
3,3'-Dichlorobenzidine	<1	<10	<1	<10	<1	<10	<1	<10	<1	<10
2,4-Dinitrotoluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
2,6-Dinitrotoluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
<pre>1,2-Diphenylhydrazine(b)</pre>	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
4-Chlorophenylphenylether	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
4-Bromophenylphenylether	cl	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bis(2-chloroisopropyl)ether	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bis(2-chloroethoxy)methane	<1	<1	<1	<1	<1	<1	<1	₹1	<1	<1
Hexachlorobutadiene	cl	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hexachlorocyclopentadiene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Isophorone	Cl	<1	<1	<1	<1	<1	<1	<1	<1	<1
Naphthalene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nitrobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
N-Nitrosodiphenylamine (a)	<1	<10	<1	<10	<1	<10	<1	<10	<1	<10
N-Nitrosodi-n-propylamine	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bis(2-ethylhexyl)phthalate	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Butylbenzylphthalate	<1	<1	¹ 5.4	<1	~ 1	<1	c<1	<1	ε ¹ _{3.6}	<1
Di-n-butylphthalate	c _{4.0}	<1	5.4	<1	è 6.6	<1	18. 6	<1.	3.6	<1
Di-n-octylphthalate	<1	<1	≤1	<1	<u><</u> 1	<1	≤ ¹	<1	٤¹	<1
Diethylphthalate	⁶ 0.6	<1	$\xi^{1}_{1.0}$	<1	ć ¹ 3.4	<1	€ ¹ _{3,6}	<1	° 0. 8	<1
Dimethylphthalate	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzo(a)anthracene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzo(a)pyrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
3,4-Benzofluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

USGS gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

**The communication of the communi

^{&#}x27;Background contamination suspected.

Table 4. (con.)

Site		shop eek	Cap		Mido Cre		Lon Cre			itna ver
Date	06-17-82	12-15-82	06-17-82	12-15-82	08-24-82	12-16-82	08-24-82	12-16-82	06-17-82	12-16-82
Time	0930	0935	1230	1225	1305	1225	1540	1100	1700	0900
Streamflow (cfs)	170	15	153	9	8	7	13	16	^a 552	"116
Parameter (µg/1)							4			
Benzo(k)fluoranthene	a	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chrysene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Acenaphthylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Anthracene	<1	_d <1	<1	_d <1	<1	d<1	<1	_. <1	<1	_d <1
Benzo(g,h,i)perylene	<1	u	<1	u 	<1	u	<1	d	<1	u
Fluorene	<1	<1	<1	<u><</u> 1	<1	<1	<1	<1	<1	<1
Phenanthrene	<1	₄ <1	<1	_d <1	<1	_d <1	<1	_. <1	<1	_d <1
Dibenzo(a,h)anthracene	<1	α d	<1	u 	<1	d	<1	u d	<1	u d -
Ideno(1,2,3-c,d)pyrene	<1	<u> </u>	<1	d 	<1	u 	<1	u	<1	u =
Pyrene	<1	<1	<1.	<1	<1	<1	<1	<1.	<1	<1

auscs gaging-station measurement, C. Savard, oral communication, USGS-WRD office, Anchorage, Alaska.

**The communication of the commun dAlaska.
No laboratory measurement made.

Table 5. Density (numbers/m*), number of species, species diversity, and evenness of benthic invertebrates collected in Middle Creek, Beluga coal-field area, August 27, 1982.

				:	Site				
т.	1	т	2	Т	3	7	4	Т	5 II
1	11	1	1.1	1	1,1	1	11	1	1.1
2250 10 70	10 700	2210	6710	8150	10 10 3640	180 1 0	20 2150 40	70 10 50	10 610 90
7.0	8.0	6.0	320	100	9.0	1.0	8.0	3.0	10
	• • •					= -			100
1010	000	100	200	10	7 0	50	5 0	220	100 60
'1490	1030	360	1560	1400	870	230	350	560	90
2.0		1.0	3.0	3.0	3.0			4 0	8 0
10			10	10	20		20	10	10
10					1.0			1.0	30
640	560	170	980	70	150	140	890	370	230
								10	10
8 0	10	80	80	500	120		290	10	10
		3 0	140		20		10		
50	10	7 0	5 0				1.0	1.0	20
380	250	10	110			130	230	140	270
	1.0	10					20	20	4 0
	10			30					
1.0	2.0						2.0	1.0	
1110	1370	420	1990	3140	2510	230	7560	270	120
8 0		620	640	190	140	110	110		20
30	60	20	180	30	30		20	10	
		1 0			1.0		90	130	40
40	30	20	180	40	10	10	3 0		
	10 70 70 1010 '1490 20 10 10 640 80 30 110 80 30 150 40	2250 700 10 70 80 1010 680 '1490 1030 20 10 10 640 560 80 10 50 10 10 20 380 250 10 10 10 30 60 150 190 40 10	2250 700 2210 10 70 70 80 60 1010 680 160 '1490 1030 360 20 10 10 10 30 640 560 170 80 10 80 30 50 10 70 10 20 380 250 10 10 10 10 10 10 10 10 10 10 10 10 10 1	I II I II 2250 700 2210 6710 10 70 80 60 320 1010 680 160 260 '1490 1030 360 1560 20 10 30 30 10 30 30 30 10 30 30 30 640 560 170 980 80 10 80 80 30 140 50 10 20 10 10 380 250 10 110 10 20 10 110 80 170 620 640 80 170 620 640 30 60 20 180 150 190 100 40 10 10 40	1 1	I II I II I II 2250 700 2210 6710 8150 3640 10 70 80 60 320 100 90 1010 680 160 260 10 70 1010 680 160 260 10 70 102 10 30 30 30 30 10 10 30	T	T	T

					Sit	e				
		1		2	3			4		5
Taxon	I	II	I	II	I	II	I	II	I	II
Uymenoptera Unidentified Braconidae Unidentified Cbalcidoidea		10	10							
Collembola Unidentified Isotomidae Unidentified Sminthuridae					10		1	0		
Turbellaria Nematoda Oligochaeta Gastropoda Pelecypoda	40	20	320	30 10 170	10 10	10	90	10 70	5 0 1 0 400	80
Arachnida Acarina Crustacea	270	200	40	390	120	280	10	510	140	20
Cladocera Ostracoda Copepoda	20 20 10	30	10 10 10	100 20	120 80	8 0 7 0	10	30	70	10
Total number of organisms/m ² Total number of insects/m² . Total number of taxa Number of taxa-insects only	7920 7560 26 21	5510 5230 24 20	4700 4310 24 19	14140 13420 25 19	14230 13890 24 19	8190 7730 21 16	1300 1190 15 12	12620 12000 24 20	2720 2050 25 20	1960 1850 22 19
Shannon-Weaver Diversity Index (all invertebrates) Evenness (all invertebrates)	3.11 0.66	3.22 0.70	2.76 0.60		1.98 0.43		3.	28 2.11 83 0.46	3.6 0.7	

Table 6. **Density** (numbers/m²), number of species, species diversity, and evenness of benthic invertebrates collected in Lone Creek, Beluga coal field area, August 27, 1982.

						Si	te					
		6		7	•	δ		9		LO		1.1
Taxon	Ι	II	I	II	I	II	I	II	I	II	I	ΙΙ
Insecta												
Ephemeroptera Unidentified Ephemeroptera			10					20			10	
Ameletus sp. Baetis tricaudatus			10				3.0	00		10	20	
Baetis sp.	890	850	990	790	720	490	10 530	20 870	1080	1150	20 2270	1920
Cinygmula sp.	30	30			. ,	770	330	010	1000	1170	2270	1920
Epeorus deceptivus		30	10									
Ephemerella doddsi	330	8 0	200	160	160	40			160	240	120	310
Ephemerella infrequens/	00		F.0							4.0.0		
E. inermis complex Unidentified	20		50	10	5 0	10	30	50	300	190	90	260
Leptophlebiidae	680	480	1180	890	340	250	100	120	9 0	180	5 0	240
Rhithrogena sp.									10		40	20
Dia santana												
Plecoptera Unidentified Plecoptera	410	290	280	740	600	440	410	590	360	1020	380	290
Unidentified Frecoptera	410	200	200	710	000	740	410	390	200	1020	300	290
Chloroperlidae	50	6 0	10	20	10	60	200	30	5 0	360	120	20
Unidentified	0.0											
Perlodidae Pteronarcella spp .	20		60	4 0	5 0	90	5 0	20	250	70	40	140
Pteronarcella spp.			10	10	2.0	10			10	3 0 2 0	10	150 10
Taenionema sp.			10	10	20	10		10	10	20	110	160
Zapada cinctipes	380	210	560	520	290	160	110	220	1250	730	280	1330
Zapada sp.	30	20									10	
Trichoptera												
Unidentified												
Trichoptera	210	5 0	170	8 0	7 0	10		20	530	40	20	160
Apatania sp.	210	110 00	0.0	20	0.0	- 0		0.0	** **	484 44 74		
Brachycentrus smy Ecclisomyia sp.	310	110 20	20	20	8 0	5 0		20	20 20	170 20 60	10	20 60
Glossosoma sp.	920	360	760	1220	890	460	40	30	470	610	730	860
Unidentified												
Hydroptilidae								10				
Unidentified Limnephilidae	50		10	10	10	10	20		3.0			140
Rhyacophila sp.	6.0	10	10	10	10	Τ 0	4 U		3 0			140
TITI GOODITIE OF.	0.0	10		10								

Table 6. (con.)

						S	ite					
Taxon	I	6 II	I	7 II	I	8 II	I	9 II	I	10 II	I	11 II
Diptera 'Chelifera sp. Unidentified					10		1	11	10	- 11	1	10
Chironomidae Dicranota sp. Hesperoconopa sp.	1420' 30	2400 70	1040 50	2370 110	1610 140	810 110	270 40	710 130	1920 70	2240 110	290 30	380 10
Palpomyia sp. Pericoma sp. Prosimulium sp.	600	380	600 20	1610 40	120 980	790 10 10	10 10		260 30	111 •	140	160 10
Unidentified Simuliidae Simulium	40 160	10 40	100 50	30			90	30 10	50		40	10
Hymenoptera Unidentified Hymenopte Unidentified Chalcidoidea Unidentified Ichneumonidae	era 10		20	10			20					10
Collembola Unidentified Isotomidae	9	10			10							
Turbellaria Nematoda Oligochaeta Pelecypoda	5 0 2 0	90	10 30 170	10 70	10 70 10	10 310	8 0 1 0	110 180 40	140 180	40 90 140 10	10 10	10 370
Arachnida Acarina Crustacea	90	100	90	190	190	80	30	90	530	380	30	
Cladocera Ostracoda Copepoda	10	110	10 10	10 60	2 0 3 0	10	40 10	1 0 2 0 3 0	20 10	10 150 10	1 0 2 0	10 20 1.0
Total number of organisms/m ² Total number of	6820	5780	6530	9030	6490	4220	2110	3390	7860	8150	4890	7190
insects/m² Total number of taxa Number of taxa-insects only	6650 25 7 21	5480 22 19	621.0 29 23	8690 25 20	6160 25 19	3810 22 18	1940 21 16	2910 25 18	6980 27 22	7320 29 21	4810 26 21	6770 30 25
Shannon-Weaver Diversity Index (all invertebrates) Evenness (all invertebrates	3.60) 0.77	3.03 0.67	3.53 0.72	3.18 0.68	3.40 . 0.73	3.41 0.76	3.40 0.77	3.31 0.71	3.54 0.74	3.53 0.73	2.88 0.61	3.54 0.72

Table 7. Habitat parameters at benthic-invertebrate sampling sites, August 27, 1982.

		M-	iddle Cı	cools							
Q:L-		_	idale Ci							_	
Site Time		1 1300		1218		3 1130		1050		5 1015	
Water temperature (°C)		10.0		10.0		9.0		9.5		8.0	
Stream width (m)		3.5		5.5		2.3		4.0		5.5	
Stream gradient (%) ^a		0.75		0.55				•		1.03	
Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grasses		6 94		100		10 90		85 15		100	
Benthos collection point	I	II	I	II	I	11	I	II	I	II	
Water depth (m)	0.08	0.08	0.08	0.10	0.18	0.20	0.19	0.3	3 0.23	0.28	3
Stream substrate compositions of Rouble Rubble Gravel Sand/silt	40 50 10	4 0 4 0 2 0	- 50 50	- 70 30	- 100 -	90 10	60 25 15	9 0 5 5	75 20 5	30 50 20	
Benthos habitat Run Riffle .	x	x	x	x		ĸ	x	X	x	x	
			T.ono	Crook							
				Creek					_		
Site	6		7	CIEEK	8		9	1	0	11	
Site Time		30					9 1500		o 540	11 1620	
	13	30	7		8			1			
Time	13		7		8 i425		1500	1	540	1620	
Time Water temperature (°C)	13	.5	7 1400 12.5		8 i425 12.5		1500 11.0	1	540 1.5	1620 12.0	5
Time Water temperature (°C) Stream width (m)	13		7 1400 12.5 4.3		1425 12.5 2.6		1500 11.0	1 1 5 1	540 1.5	1620 12.0 6.1	5
Time Water temperature (°C) Stream width (m) Stream gradient ^a (%) Riparian habitat (%) Conifers Deciduous trees Shrubs/brush	13 10 2		7 1400 12.5 4.3 0.9		8 i425 12.5 2.6 0.50	I	1500 11.0 4.9	1 1 5 1	540 1.5 6.4	1620 12.0 6.1 0.96	II
Time Water temperature (°C) Stream width (m) Stream gradient ^a (%) Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grasses Benthos	13 10 2 50 50	.5	7 1400 12.5 4.3 0.9 2 18 40 40	5	8 i425 12.5 2.6 0.50 25 45 30 II		1500 11.0 4.9	1 1 5 1 3	540 1.5 6.4 5 5	1620 12.0 6.1 0.96	
Time Water temperature (°C) Stream width (m) Stream gradient ^a (%) Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grasses Benthos I Collection point Water depth (m) 0.08 Stream substrate composi Boulder Rubble 10 Gravel Sand/silt •	13 10 2 50 50 11 0.11 tion (%) 80 20 4	I 0.15	7 1400 12.5 4.3 0.9 2 18 40 40 II 0.08 30 50 1	I 0.10	25 425 0.50 2.6 0.50 25 45 30	0.30 4	1500 11.0 4.9 9: II 0.36	1 1 5 1 3	540 1.5 6.4 5 5 0 II 0.41	1620 12.0 6.1 0.96 80 10 10	II
Time Water temperature (°C) Stream width (m) Stream gradient (%) Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grasses Benthos I Collection point Water depth (m) 0.08 Stream substrate composi Boulder Rubble 90 Rubble 10 Gravel	13 10 2 50 50 11 0.11 tion (%) 80 20 4	I 0.15	7 1400 12.5 4.3 0.9 2 18 40 40 11 0.08 30 50 18	I 0.10	8 i425 12.5 2.6 0.50 25 45 30 II 0.08	0.30 4 0 .4	1500 11.0 4.9 9: II 0.36 57	1 1 5 1 3 1 0.41	540 1.5 6.4 5 5 0 II 0.41	1620 12.0 6.1 0.96 80 10 10	II 0.25 90

'Determined in August 1983

Appendix A - Analytical procedures

Parameter	Sample container, hold times, handling, preservation, preparation for analysis	
Chemical oxygen demand (COD)	500-m1 glass, wide-top jar with Teflon-lined lid. Acidified with concentrated H ₂ SO ₄ to pH<2. Kept chilled, analysis begun within 7 days.	
Color	500-m1 polyethylene bottle, chilled to 4°C. Analyses begun within 7 days.	Color: Visual comparison, using platinum-cobalt method and reporting to the nearest 5 platinum cobalt units (PCU's). American Public Health Association (1980, p. 60-63).
Turbidity	As above	Turbidity: Hach 2100-A Turbidimeter reported in nephelometric turbidity units (NTU's). Report to the nearest 0.05 unit in the 0 to 1 NTU range; 0.1 in the 1 to 10 range; 1 in the 10 to 40 range; and 5 in the 40 to 100 range. American Public Health Association (1980, p. 131-134).
Residues, total filtrable and nonfiltrable	As above	Residues, total filtrable, dried at 180°C; Total nonflltrable, dried at 103°-105°C. Report to nearest 0.1 mg/l. American Public Health Association (1980, p. 90-95).
Nitrate nitrogen	500-ml polyethylene bottle, chilled to 4°C, and delivered to lab within 24 hr. On arrival at lab, samples are frozen until just before determinations are made.	Nitrate N: Automated cadmium reduction method. Lower limit of quantitation <1.0 mg/l. Limit of detection is 0.05 mg/l. American Public Health Association (1980, p. 376).

aProcedure differs from American Public Health Association (1980).

Parameter	Sample container, hold times, handling, preservation, preparation for analysis	quantitation limits (QL) and
Ammonia	As with nitrate nitrogen ^a	Ammonia: Selective electrode method. Lower limit of quantitation (OL) is <0.1 mg/l. Lower limit of detection (DL) is 0.03 mg/l. American Public Health Association (1980, p. 362).
Orthaphosphate	As above ^a	Orthophosphate: Ascorbic acid method, Report OL as <0.5 mg/l. DL is 0.05 mg/l. American Public Health Association (1980), p. 420.
Sulfate	As above	Sulfate: Barium sulfate turbidity method. Report QL as <10 mg/l. DL is 1.0 mg/l. American Public Health Association (1980, p. 439).
Silver (Ag)	500-ml polyethylene bottle for all metal samples. Chilled at 4°C. Promptly acidified in lab with subboiling-distilled concentrated HNO ₃ to pH c2.7. Stored at room temperature for up to 6 months. Prior to analysis, sample digested to 60°C overnight. Sediment allowed to settle or removed by filtration.	Atomic absorption, graphite furnace Perkin-Elmer HGA 2100. Report CL as <5.0 /mg/l. DL is 0.3 /mg/l. U.S. Environmental Protection Agency (1979, method 272.2).
Aluminum (Al)	As above ^b	As above. QL <50 Mg/1. DL is 20 Mg/1. U.S. Environmental Protection Agency (1979, method 202.2).

Procedure differs from American Public Health Association (1980).
Procedure differs from U.S. Environmental Protection Agency (1979).

	Sample container, hold times, handling, preservation,	quantitation limits (OL) and
Parameter	preparation for analysis	detection limits (DL)
Arsenic (As)	As above ^b	As above. OL <5.0 \(\mu_g/1. DL \) is 1.0 \(\mu_g/1. U.S. \) Environmental Protection Agency (1979, method 206.2).
Barium (Ba)	As above ^b	As above. QL is 4.2 mg/1. DL is 0.002 mg/1. U.S. Environmental Protection Agency (1979, method 208.2).
Beryllium (Be)	As above ^b	As above. OL is <2.0 Mg/1. DL is 0.2 Mg/1. U.S. Environmental Protection Agency (1979, method 210.2).
Calcium (Ca)	As above ^b	Atomic absorption, flame, 1000 mg/l lanthanum oxide. QL <5.0 mg/l. DL is 0.1 mg/l. U.S. Environmental Protection Agency (1979, method 215.1).
Cadmium (Cd)	As above ^b	Atomic absorption, graphite furnace Perkfn Elmer HGA 2100. QL <2.0 Mg/1. DL is 0.2 Mg/1. U.S. Environmental Protectjon Agency (1979, method 213.2).
Cobalt (Co)	As above ^b	As above. QL <5.0 Mg/1. DL is 1.0 Mg/1. U.S. Environmental Protection Agency (1979, method 219.2).
Chromium (Cr)	As above ^b	As above. QL is <5 \(\mu_g/1. \) DL is 0.7 \(\mu_g/1. \) U.S. Environmental Protection Agency (1979, method 218.2).
Copper (Cu)	As above ^b	As above. OL <5.0 %/1. DL is 1.0 %/1. U.S. Environmental Protection Agency (1979, method 220.2).

brocedure differs from U.S. Environmental Protection Agency (1979).

Parameter	Sample container, hold times, handling, preservation, preparation for analysis	quantitation limits (QL) and
Iron (Fe)	As above ^b	Atomic absorption, flame. QL <0.2 mg/l. DL is 0.01 mg/l. U.S. Environmental Protection Agency (1979, method 236.1).
Mercury (Hg)	As with other metals. Organics in sample, if any, are oxidized with UV radiation prior to analysis	Cold-vapor atomic-absorption technique (potassium permanganate). QL <1.0 Mg/1. DL Is 0.2 Mg/1. U.S. Environmental Protection Agency (1979, method 245.1).
Potassium (K)	As above'	Atomic absorption, flame. 10.0 mg/1 K solution added. QL <1.0 mg/1. DL is 0.05 mg/1. U.S. Environmental Protection Agency (1979, method 258.1).
Magnesium (Mg)	As above ^b	Atomic absorption, flame. 1000 mg/1 lanthanum oxide solution added. QL <5.0 mg/1. DL is 0.1 mg/1. U.S. Environmental Protection Agency (1979, method 242.1).
Manganese (Mn)	As above ^b	Atomic absorption, graphite furnace Perkin Elmer HGA 2100. QL <10 /g/1. DL is 2.0 /g/1. U.S. Environmental Protection Agency (1979, method 243.2).
Sodium (Na)	As above ^b	Atomic absorption, flame. 1000 mg/1 K solution added. QL <2 mg/1. DL is 0.1 mg/1. U.S. Environmental Protection Agency (1979, method 273.1).

brocedure differs from U.S. Environmental Protection Agency (1979).

Parameter	Sample container, hold times, handling, preservation, preparation for analysis	
Nickel (Ni)	As aboveb	Atomic absorption, graphite furnace Perkin Elmer HGA 2100. QL <10 /g/1. DL 3.0 /g/1. U.S. Environmental Protection Agency (1979, method 249.2).
Lead (Pb)	As above ^b	As above. QL <5.0 Mg/1. DL is 3.0 Mg/1. U.S. Environmental Protection Agency (1979, method 239.2).
Selenium (Se)	As above ^b	Atomic absorption, gaseous hydride method (nitrogen). QL <2.0 /2/1. DL is 1.0 /2/1. U.S. Environmental Protection Agency (1979, method 270.3).
Zinc (Zn)	As above ^b	Atomic absorption, graphite furnace Perkin Elmer HGA 2100.' QL <10 \(\sigma_0 / 1 \). DL is 0.5 \(\sigma_0 / 1 \). U.S. Environmental Protection Agency (1979, method 289.2).
Gross Alpha	Obtained with metals samples.	Internal proportional- counter Converter. Nuclear' Measurements Corp. model PCC 11T with decade scaler, model DS-3. QL <1 pico- curie/l.

b Procedure differs from U.S. Environmental Protection Agency (1979).

Organics (see following pages for species in each group)	Sample containers, hold times, handling, preservation, preparation for analysis	Method of analysis, limits of quantitation in micrograms per liter (片g/1)
Purgeable (volatile) organics	Two 40-ml glass septum vials (sample and duplicate); 0.15 ml of 1:1 HC1 in bottle prior to sampling as preservative. Analyze within 14 days of collection. When sampling, fill bottles so that no air bubbles remain after closing cap. Keep chilled to 4°C.	EPA test method 602 (July, 1982). Automated purge and trap system using Tekmar ALS-LSC II and a Varian 6000 gas chromatograph with a Vista 401 chromatography data system. Limit of quantitation is <0.2 \(^8/1\).
Base neutral and acid extract-ables	One-liter amber glass bottle. Chill samples to 4°C and extract within 7 days. Samples likely to have pollution levels of these compounds are to be completely analyzed within 40 days of extraction.	EPA test method 625 (July, 1982). One set of samples was analyzed at Laucks Laboratories for selected organics on the U.S. EPA priority pollutant list. Laucks uses a Finnigan Organics in Water Analyzer (OWA). Although limits of detection may vary somewhat between species, Laucks reported all limits of quantitation as <1.0 \(\begin{align*} al

(GC/MS/DS). Cuantitation limit for each species

reported on following pages.

CLaucks Testing Laboratories, Inc., Seattle.

Organics by group

1.	Purgeable (volatile) aromatics	Limit of quantitation (火g/1)
	Benzene Ethylbenzene	<0.2 <0.2
	Toluene p-Xylene	<0.2 <0.2 <0.2
	m-Xylene o-Xylene	<0.2
2.	Acid extractables	Limit of quantitation (/g/1)
	2,4,6-Trichlorophenol Parachlorometacresol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2-Nitrophenol 4-Nitrophenol 2,4-Dinitrophenol 4,6-Dinitro-o-cresol Pentachlorophenol Phenol	<2 <2 <2 <2 <2 <2 <2 <2 <10 <10 <10 <2

3. Base neutral extractables

Limit of quantitation (/g/1)

7 b + b	-1	N' backen and	. 1
Acenaphthene	<1	Nitrobenzene	<1
Benzidine	<10	N-Nitrosodiphenyl amine (a)	<10
1,2,4-Trichlorobenzene	<1	N-Nitrosodi-n-propyl amine	<1
Hexachlorobenzene	<1	Bis(2-ethylhexyl)phthalate	<1
Hexachloroethane	<1	Rutylbenzylphthalate	<1
Bis(2-chloroethy1) ether	<1	Di-n-butylphthalate	<1
2-Chloronaphthalene	<1	Di-n-octylphthalate	<1
1,2-Dichlorobenzene	<1	Diethylphthalate	<1
1,3-Dichlorobenzene	<1	Dimethylphthalate	<1
1,4-Dichlorobenzene	<1	Benzo(a)anthracene	<1
3,3'-Dichlorobenzidine	<10	Benzo(a)pyrene	<1
2,4-Dinitrotoluene	<1	3,4-Benzofluoranthene	<1
2,6-Dinitrotoluene	<1	Benzo(k)fluoranthene	<1
1,2-Diphenylhydrazine (b)	<1	Chrysene	<1
Fluoranthene	<1	Acenaphthylene	<1
4-Chlorophenyl phenyl ether	<1	Anthracene	<1
4-Bromophenyl phenyl ether	<1	Benzo(g,h,i)perylene	
Bis(2-chloroisopropyl)ether	<1	Fluorene	<1
Bis(2-chloroethoxy)methane	<1	Phenanthrene	<1
Hexachlorobutadiene	<1	Dibenzo(a,h)anthracene	
Hexachlorocyclopentadiene	<1	Indeno(1,2,3-c,d)pyrene	
Isophorone	<1	Pyrene	<1
Naphthalene	<1		